
DOCUMENT ON SOFTWARE ANALYSIS AND
DESIGNING

Project Title: “Multimodal Interface Directed by
Action Sentences (MIDAS) – The use of Natural User
Interaction (NUI) Devices”.

Software analysis and design were drafted by:

Name Surname Ε-mail

Grigorios Kalliatakis gkalliatakis@yahoo.gr
Efthimios Syntychakis pepemakis@hotmail.com

Petros Varchalamas sonor_7@hotmail.com
Anastasios Vlasopoulos anvlasop@hotmail.com

Day & Time of Course:

Friday 9:15-14:00
Winter Semester 2013-2014
M.Sc in Informatics and Multimedia

Under the supervision of Prof. Dr Vidakis Nikolaos

mailto:gkalliatakis@yahoo.gr
mailto:pepemakis@hotmail.com
mailto:sonor_7@hotmail.com
mailto:%20anvlasop@hotmail.com

 Advanced Software Engineering

Table of Contents

Chapter 1 – Textual Analysis-A tool to design connectivity with NUI Devices -------------- 3

Chapter 2 – Requirements Capturing -- 5

[Section 1] Relation between the user and the system -- 5

[Section 2] Relation between Recognition Library and Handlers ---------------------------------- 5

[Section 3] Relation between Environment and the System --- 6

Chapter 3 – Use Cases --- 7

Chapter 4 – Class Diagram --- 10

Chapter 5 – Sequence Diagram --- 11

Chapter 6 – Component Diagram -- 13

Chapter 7 – Deployment Diagram --- 14

Chapter 8 – Package Diagram --- 15

Page 2 from 15

 Advanced Software Engineering

Chapter 1 – Textual Analysis-A tool to design
connectivity with NUI Devices

Textual analysis is a tool for recording customers' needs. Furthermore, it lets you
extract key terms from a passage you recorded, and transform the terms to model
elements or put them into glossary to build a project - based dictionary. It consists of:

i. Recording requirements

Document customers' needs by performing textual analysis.

ii. Identifying important terms

Shows you how to identify glossary term from a passage recorded by textual
analysis.

iii. Identifying candidate objects

Shows you how to identify candidate model element from a passage. You
selectively convert candidate to actual model element and visualize it in diagram.

iv. Forming diagram from candidate objects

Shows you how to visualize candidate elements in a diagram.

v. Candidate pane view

A view that shows candidate elements in visualized form - as boxes.

Page 3 from 15

 Advanced Software Engineering

The system will enable the user to choose between recognition patterns listed below
each available (registered) device. Depending on the users choices the system will
initiate the appropriate devices. If the device is not registered (does not have a
handler), it is displayed but has no recognition patterns above it, only the option of
registration.

If a device is not registered (does not have a handler to initiate to the system) we can
search online for an available. Depending on the handlers output, system
automatically connects recognition patterns if we have any that can use it. We can
download new recognition patterns. When a New recognition pattern is downloaded,
it connects with the handlers depending on their output.

When we choose recognitions and devices the system initiates. The user must log in
with the use of the current devices and recognitions.

System checks the validity of the recognitions, if recognition is disturbed by external
factors, system will inform the user and either take low information/ low attention to
the recognition or disable it until the environment is clean enough to use it again.
When that happens it, again, warns the user to enable the recognition.

All recognition patterns will provide a certain type of output. The output will have the
word that the recognition pattern detected the type of the recognition that detected it,
(e.g. voice, gesture etc.) the attributes of this word –if any (e.g. x, y, z factors etc.).
Core will have a listener to manage any word that will pop up, by sending the word to
Sentence Compiler, the attributes to be calculated to Context information manager
and then hand them over to Sentence compiler. Also, Sentence compiler will always
inform the system on which state is the sentence that he’s composing and what can
come next (using the Grammar DB). We want this to use it on GUI to keep the user
informed about the sentence he is composing.

Figure 1 Textual Analysis

Page 4 from 15

 Advanced Software Engineering

Chapter 2 – Requirements Capturing

[Section 1] Relation between the user and the system

The user can interact with the computer by using Natural User Interaction devices,
which support different recognition patterns.

[Section 2] Relation between Recognition Library and
Handlers

The system will be able to attach recognition patterns with NUI devices.

 The user will be allowed to choose the recognition pattern to be used

 The system should inform the user for the registered (having a handler)
devices, thus indicating what kind of recognition may be implemented

 There must be the capability by the system to register an unknown device by
downloading (from the Net), the suitable handlers

 The user will be able to perform system log in by using the preinstalled NUI
devices, or in a different way (if no NUI devices are installed)

 The system will automatically connect available handlers (registered devices)
with the competent recognition pattern.

 Newly downloaded handlers should be able to automatically connect to
appropriate recognition patterns, in the same way.

Page 5 from 15

 Advanced Software Engineering

[Section 3] Relation between Environment and the System

The system should be able to take into consideration, potential changes that may
occur in the environment.

Below, Image 2 shows the requirements as identified from the textual analysis which
was preceded.

Figure 2 Top-level Requirements resulting from Textual Analysis

 Environmental changes affecting recognitions made by the system should be
marked in a semantic way.

 The system could be adaptive in a way to prevent the user from choosing low-
quality recognitions.

Page 6 from 15

 Advanced Software Engineering

Chapter 3 – Use Cases

The use case modeling approach keeps software developments focused on what user
wants to do (user goal) rather than what features is going to develop. Use case
diagram provides a crystal clear presentation for system analyst to see all user goals
(use cases) and related end-users (actors).

For this purpose, we came up with several use cases being part of the overall system
usage example. The first case has to do with how devices are managed by the system.
So the user in order to register a new (to the system) NUI device, device detection is
required from the system, before completing the association with the corresponding
handler. Another case would be the actual management of registered devices by the
user. In such a case, the user would be able to select the desired recognition pattern.
Furthermore, the user could view all available recognitions patterns and devices, as
our last use case of the managing device process.

Figure 3 Device Management Use Case

Page 7 from 15

 Advanced Software Engineering

Another case is the natural interaction the user can have with the system. The use case
illustrated here is when the user logs in to the system, using registered NUI devices
and installed pattern recognitions.

Figure 4 Natural Interaction Use Case

Page 8 from 15

 Advanced Software Engineering

Below we present the overall system’s use case which is built upon the
aforementioned sub-use cases.

Figure 5 An overall system's Use Case

Page 9 from 15

 Advanced Software Engineering

Chapter 4 – Class Diagram

The resulting class diagram contains three different packages, the “Device Manager” ,
the “Recognition Library” and the “MIDAS Core”. The model shown in the diagram
below expresses that in order to manage the different NUI devices that will be
imported to the system, they need to be connected to an appropriate handler.
Moreover, the recognition library indicates the different recognitions patterns that can
be connected with different NUI devices as well as new recognition patterns that can
be downloaded by the users. Finally, the association between MIDAS core and the
operation system is shown in the last package, which contains the main operation to
connect with the operating system the context information manager Also it is shown
how recognition manager is connected with MIDAS core. All relationships outlined
above are presented in Figure 6.

Figure 6 Class Diagram of the system's architecture

Page 10 from 15

 Advanced Software Engineering

Chapter 5 – Sequence Diagram

In this sequence diagram is presented the procedure for the physical interaction of the
user with the MIDAS system (Multimodal Interface Directed by Action Sentences)
and by extension to the operating system, based on the use case of «Put That There»,
using Microsoft Kinect.
Here is a description of the steps followed from 1 to 46.
In steps 1-4, the initialization of the multimodal input device Kinect, starts through
the Kinect_Handler (each type of device connected to MIDAS is initialized through
its custom handler). Sound, depth and skeleton stream pass through the handler in
order to be transferred in recognition patterns as input. In steps 5 and 6 speech
recognition receives sound stream, as gesture recognition the skeleton stream.
The user as an actor of the procedure can start the interaction by saying the word
“This”, in step 7.
This command is a bit tricky because it contains attributes from both speech and
gesture recognition, speaking and pointing. Specifically, speech recognition informs
recognition manager that the word “This” is detected in step 8. Recognition manager
requests data from gesture recognition that assembles the qualifier and its attributes in
step 9. In step 10 the new qualifier is sent to the sentence compiler and the attributes
to context information manager (CIM) as shown in step 11. Continuing in step 12,
CIM makes a request in the operating system to get the item’s context that the user
pointed at.
In steps 13 the qualifier from step 10 is added into the sentence and in step 14 a check
of the completion of the sentence is done.
The attributes from the previous request, in step 12, in this case the x, y coordinates of
the item that the user pointed at, are granted from the operating system and the CIM
gets them in step 15, to send them as a new qualifier in sentence compiler in step 16.
During steps 17 and 18 the qualifier is added in sentence and then continues with the
check of the completion of the sentence. Since the user hasn’t complete a sentence,
that part of the sentence with its attributes is sent to the CIM in step 19 ,which finally
updates the interface of the operating system.
The whole procedure from step 21 to 34 is repeated for the word “There” and from 35
to 46 for the word “Put” with the difference that the word “Put” doesn’t require any
other attributes so recognition manager sends the new qualifier to sentence compiler
and null qualifier attributes to context information manager.

Page 11 from 15

 Advanced Software Engineering

Figure 7 Physical Interaction Sequence Diagram

Page 12 from 15

 Advanced Software Engineering

Chapter 6 – Component Diagram

Component diagrams are different in terms of nature and behavior. Component
diagrams are used to model physical aspects of a system. Physical aspects are the
elements like executables, libraries, files, documents etc which resides in a node.
So component diagrams are used to visualize the organization and relationships
among components in a system. These diagrams are also used to make executable
systems.

Component diagram is a special kind of diagram in UML. The purpose is also
different from all other diagrams discussed so far. It does not describe the
functionality of the system but it describes the components used to make those
functionalities. So from that point component diagrams are used to visualize the
physical components in a system. These components are libraries, packages, files etc.
Component diagrams can also be described as a static implementation view of a
system. Static implementation represents the organization of the components at a
particular moment.

A single component diagram cannot represent the entire system but a collection of
diagrams are used to represent the whole.
So the purpose of the component diagram can be summarized as:

• Visualize the components of a system.
• Construct executables by using forward and reverse engineering.
• Describe the organization and relationships of the components.

Figure 8 Handler Component Diagram

Page 13 from 15

 Advanced Software Engineering

Chapter 7 – Deployment Diagram

Deployment diagrams are used to visualize the topology of the physical components
of a system where the software components are deployed. So deployment diagrams
are used to describe the static deployment view of a system. Deployment diagrams
consist of nodes and their relationships.

The name Deployment itself describes the purpose of the diagram. Deployment
diagrams are used for describing the hardware components where software
components are deployed. Component diagrams and deployment diagrams are closely
related. Component diagrams are used to describe the components and deployment
diagrams shows how they are deployed in hardware.

UML is mainly designed to focus on software artifacts of a system. But these two
diagrams are special diagrams used to focus on software components and hardware
components. So most of the UML diagrams are used to handle logical components but
deployment diagrams are made to focus on hardware topology of a system.
Deployment diagrams are used by the system engineers.

The purpose of deployment diagrams can be described as:

• Visualize hardware topology of a system.
• Describe the hardware components used to deploy software components.
• Describe runtime processing nodes.

Figure 9 Deployment Diagram

Page 14 from 15

 Advanced Software Engineering

Chapter 8 – Package Diagram

Package diagram visualizes packages and depicts the dependency, import, access,
generalization, realization and merge relationships between them. Package diagram
enables you to gain a high level understanding of the collaboration among model
elements through analyzing the relationships among their parent package. This also
helps explain the system's architecture from a broad view.

UML package helps to organize and arrange model elements and diagrams into
logical groups, through which you can manage a chunk of project data together. You
can also use packages to present different views of the system's architecture. In
addition, developers can use package to model the physical package or namespace
structure of the application to build. Package diagrams can use packages containing
use cases to illustrate the functionality of a software system.

Package diagrams can use packages that represent the different layers of a software
system to illustrate the layered architecture of a software system. The dependencies
between these packages can be adorned with labels / stereotypes to indicate the
communication mechanism between the layers.

Figure 10 Package Diagram

Page 15 from 15

	Chapter 1 – Textual Analysis-A tool to design connectivity with NUI Devices
	[Section 1] Relation between the user and the system
	[Section 2] Relation between Recognition Library and Handlers
	[Section 3] Relation between Environment and the System

	Chapter 3 – Use Cases
	Chapter 4 – Class Diagram
	Chapter 5 – Sequence Diagram
	Chapter 6 – Component Diagram
	Chapter 7 – Deployment Diagram
	Chapter 8 – Package Diagram

